Decomposition Numbers for Perverse Sheaves

نویسنده

  • DANIEL JUTEAU
چکیده

The purpose of this article is to set foundations for decomposition numbers of perverse sheaves, to give some methods to calculate them in simple cases, and to compute them concretely in two situations: for a simple (Kleinian) surface singularity, and for the closure of the minimal non-trivial orbit in a simple Lie algebra. This work has applications to modular representation theory, for Weyl groups using the nilpotent cone of the corresponding semisimple Lie algebra, and for reductive algebraic group schemes using the affine Grassmannian of the Langlands dual group.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Modular perverse sheaves on flag varieties I: tilting and parity sheaves

In this paper we prove that the category of parity complexes on the flag variety of a complex connected reductive group G is a “graded version” of the category of tilting perverse sheaves on the flag variety of the dual group Ǧ, for any field of coefficients whose characteristic is good for G. We derive some consequences on Soergel’s modular category O, and on multiplicities and decomposition n...

متن کامل

Modular Representations of Reductive Groups and Geometry of Affine Grassmannians

By the geometric Satake isomorphism of Mirković and Vilonen, decomposition numbers for reductive groups can be interpreted as decomposition numbers for equivariant perverse sheaves on the complex affine Grassmannian of the Langlands dual group. Using a description of the minimal degenerations of the affine Grassmannian obtained by Malkin, Ostrik and Vybornov, we are able to recover geometricall...

متن کامل

Perverse Coherent Sheaves on Blow-up. Ii. Wall-crossing and Betti Numbers Formula

This is the second of series of papers studyig moduli spaces of a certain class of coherent sheaves, which we call stable perverse coherent sheaves, on the blow-up p : X̂ → X of a projective surface X at a point 0. The followings are main results of this paper: a) We describe the wall-crossing between moduli spaces caused by twisting of the line bundle O(C) associated with the exceptional diviso...

متن کامل

Perverse sheaves on affine Grassmannians and Langlands duality

In this paper we outline a proof of a geometric version of the Satake isomorphism. Namely, given a connected, complex algebraic reductive group G we show that the tensor category of representations of the dual group G is naturally equivalent to a certain category of perverse sheaves on the affine Grassmannian of G. This can be extended to give a topological realization of algebraic representati...

متن کامل

Perverse Sheaves on Real Loop Grassmannians

The aim of this paper is to identify a certain tensor category of perverse sheaves on the real loop Grassmannian GrR of a real form GR of a connected reductive complex algebraic group G with the category of finite-dimensional representations of a reductive complex algebraic subgroup H of the dual group Ǧ. The root system of H is closely related to the restricted root system of GR. The fact that...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008